Thermoplastic Pultrusion Process of Polypropylene/Glass Tapes

Author:

Tucci Fausto1ORCID,Rubino Felice2ORCID,Pasquino Germana3,Carlone Pierpaolo1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy

2. Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy

3. Universitas Mercatorum, 00186 Rome, Italy

Abstract

The present work focuses on the pultrusion of pre-impregnated glass-reinforced polypropylene tapes. An appositely designed laboratory-scale pultrusion line, consisting of a heating/forming die and a cooling die, was used. The temperature of the advancing materials and the pulling force resistance were measured by using thermocouples embedded in the pre-preg tapes and a load cell. From the analysis of the experimental outcomes, we gained insight into the nature of the material–machinery interaction and the transitions of the polypropylene matrix. The cross-section of the pultruded part was analyzed by microscope observation to evaluate the distribution of the reinforcement inside the profile and the presence of internal defects. Three-point bending and tensile testing were conducted to assess the mechanical properties of the thermoplastic composite. The pultruded product showed good quality, with an average fiber volume fraction of 23% and a limited presence of internal defects. A non-homogenous distribution of fibers in the cross-section of the profile was observed, probably due to the low number of tapes used in the present experimentation and their limited compaction. A tensile modulus and a flexural modulus of 21.5 GPa and 15.0 GPa, respectively, were measured.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3