Research Status of and Prospects for 3D Printing for Continuous Fiber-Reinforced Thermoplastic Composites

Author:

Yang Yuan1ORCID,Yang Bo1,Chang Zhengping2,Duan Jihao1,Chen Weihua1

Affiliation:

1. Key Laboratory of Manufacturing Equipment of Shaanxi Province, Xi’an University of Technology, Xi’an 710048, China

2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Continuous fiber-reinforced thermoplastic composites (CFRTPCs) have advantages such as high specific strength, high specific modulus, corrosion resistance, and recyclability and are widely used in the fields of aerospace, rail transit, new energy, and so on. However, traditional methods for preparing CFRTPCs, such as placement and molding, rely more on forming molds, resulting in high manufacturing costs and a slow response speed, which limits the promotion and application of the new generation of CFRTPCs with complex configurations and designable performance. Three-dimensional printing can efficiently create products with multiple materials, complex structures, and integrated functions, introducing new ways and opportunities for the manufacturing of CFRTPCs. However, poor mechanical properties are the bottleneck problem in achieving 3D printing of CFRTPCs. This paper summarizes the research status of the fused deposition modeling (FDM) 3D printing process and the corresponding mechanical properties of CFRTPCs. The focus is on analyzing the influences of the FDM process parameters, such as the material type, printing temperature, speed parameters, layer thickness, scanning space, stacking direction, and fiber volume content, on the mechanical properties of CFRTPCs. Finally, the main problems and future prospects of current CFRTPCs-FDM are analyzed and forecasted, providing new references and ideas for 3D printing of high-performance CFRTPCs.

Funder

Special Scientific Research Project of Shaanxi Education Department

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3