Synergistic Use of All-Acceptor Strategies for the Preparation of an Organic Semiconductor and the Realization of High Electron Transport Properties in Organic Field-Effect Transistors

Author:

Ren Shiwei12ORCID,Zhang Wenqing3,Wang Zhuoer4,Yassar Abderrahim5ORCID,Liao Zhiting1,Yi Zhengran1

Affiliation:

1. Zhuhai Fudan Innovation Institute, Guangdong-Macao Deep-Cooperation Zone of Hengqin, Zhuhai 519001, China

2. Department of Materials Science, Fudan University, Shanghai 200433, China

3. Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

4. Key Laboratory of Colloid and Interface Chemistry of Ministry of Education School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

5. Laboratory of Physics of Interfaces and Thin Films-CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

Abstract

The development of n-type organic semiconductor materials for transporting electrons as part of logic circuits is equally important to the development of p-type materials for transporting holes. Currently, progress in research on n-type materials is relatively backward, and the number of polymers with high electron mobility is limited. As the core component of the organic field-effect transistor (OFET), the rational design and judicious selection of the structure of organic semiconductor materials are crucial to enhance the performance of devices. A novel conjugated copolymer with an all-acceptor structure was synthesized based on an effective chemical structure modification and design strategy. PDPPTT-2Tz was obtained by the Stille coupling of the DPPTT monomer with 2Tz-SnMe3, which features high molecular weight and thermal stability. The low-lying lowest unoccupied molecular orbital (LUMO) energy level of the copolymer was attributed to the introduction of electron-deficient bithiazole. DFT calculations revealed that this material is highly planar. The effect of modulation from a donor–acceptor to acceptor–acceptor structure on the improvement of electron mobility was significant, which showed a maximum value of 1.29 cm2 V−1 s−1 and an average value of 0.81 cm2 V−1 s−1 for electron mobility in BGBC-based OFET devices. Our results demonstrate that DPP-based polymers can be used not only as excellent p-type materials but also as promising n-type materials.

Funder

China Scholarship Council

China Post-doctoral Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3