Behaviour of FITC-Labeled Polyallylamine in Polyelectrolyte Microcapsules

Author:

Dubrovskii Alexey V.1,Berezhnov Alexey V.2ORCID,Kim Aleksandr L.1ORCID,Tikhonenko Sergey A.1ORCID

Affiliation:

1. Institute of Theoretical and Experimental Biophysics Russian Academy of Science, 3, Institutskaya Str., 142290 Pushchino, Moscow Region, Russia

2. Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia

Abstract

There are many studies devoted to the application of polyelectrolyte microcapsules (PMC) in various fields; however, there are significantly fewer studies devoted to the study of the polyelectrolyte microcapsules themselves. The study examined the mutual arrangement of the polyelectrolytes in 13-layered PMC capsules composed of (PAH/PSS)6PAH. The research showed that different layers of the polyelectrolyte microcapsules dissociate equally, as in the case of 13-layered PMC capsules composed of (PAH/PSS)6PAH with a well-defined shell, and in the case of 7-layered PMC capsules composed of (PAH/PSS)3PAH, where the shell is absent. The study showed that polyallylamine layers labeled with FITC migrate to the periphery of the microcapsule regardless of the number of layers. This is due to an increase in osmotic pressure caused by the rapid flow of ions from the interior of the microcapsule into the surrounding solution. In addition, FITC-polyallylamine has a lower charge density and less interaction with polystyrene sulfonate in the structure of the microcapsule. Meanwhile, the hydrophilicity of FITC-polyallylamine does not change or decreases slightly. The results suggest that this effect promotes the migration of labeled polyallylamine to a more hydrophilic region of the microcapsule, towards its periphery.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3