Soft Wearable Piezoresistive Sensors Based on Natural Rubber Fabricated with a Customized Vat-Based Additive Manufacturing Process

Author:

Georgopoulou Antonia1ORCID,Srisawadi Sasitorn2ORCID,Wiroonpochit Panithi2ORCID,Clemens Frank1ORCID

Affiliation:

1. Department of Advanced Materials and Surfaces, Empa-Swiss Federal Laboratories for Material Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland

2. National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand

Abstract

Piezoresistive sensors for monitoring human motions are essential for the prevention and treatment of injury. Natural rubber is a material of renewable origin that can be used for the development of soft wearable sensors. In this study, natural rubber was combined with acetylene black to develop a soft piezoresistive sensing composite for monitoring the motion of human joints. An additive manufacturing technique based on stereolithography was used, and it was seen that the sensors produced with the method could detect even small strains (<10%) successfully. With the same sensor composite fabricated by mold casting, it was not possible to detect low strains reliably. TEM microscopy revealed that the distribution of the filler was not homogeneous for the cast samples, suggesting a directionality of the conductive filler network. For the sensors fabricated through the stereolithography-based method, a homogeneous distribution could be achieved. Based on mechano-electrical characterization, it was seen that the samples produced with AM combined the ability to endure large elongations with a monotonic sensor response. Under dynamic conditions, the sensor response of the samples produced by 3D printing showed lower drift and lower signal relaxation. The piezoresistive sensors were examined for monitoring the motion of the human finger joints. By increasing the bending angle of the sensor, it was possible to increase the sensitivity of the response. With the renewable origin of natural rubber and manufacturing method, the featured sensors can expand the applicability of soft flexible electronics in biomedical applications and devices.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3