Drift‐Aware Feature Learning Based on Autoencoder Preprocessing for Soft Sensors

Author:

Wang Junming1ORCID,Shu Jing1ORCID,Alam Md Masruck1,Gao Zhaoli1,Li Zheng1,Tong Raymond Kai‐Yu1ORCID

Affiliation:

1. Department of Biomedical Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China

Abstract

In this article, a novel approach is presented for drift‐aware feature learning aimed at calibrating drift biases in soft sensors for long‐term use. The proposed method leverages an autoencoder for data preprocessing to extract expressive signal drift traces features, and incorporates drift characteristics through the latent space representation in a long short‐term memory (LSTM) regression neural network. In the results, it is demonstrated that the proposed approach outperforms other typical recurrent neural networks, such as LSTM, gated recurrent unit, and bidirectional LSTM, with a reduced root mean square error of 60% for the training dataset (≈2.5 h) and 80% for the testing dataset (≈20 h). The proposed approach has the potential to optimize the performance of soft sensors with long‐term drift and reduce the need for frequent recalibration. By compensating for sensor drift using existing prior information and limited time data, the proposed neural network can effectively reduce the complexity and computational burden of the system, without the need for additional settings or hyperparameter fine‐tuning.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3