Synthesis of Iron Oxides and Influence on Final Sizes and Distribution in Bacterial Cellulose Applications

Author:

de Souza Thaís Cavalcante12,Costa Andréa Fernanda de Santana23,Vinhas Gloria Maria14ORCID,Sarubbo Leonie Asfora25ORCID

Affiliation:

1. Center of Exact and Natural Sciences, Department of Materiais Science, Federal University of Pernambuco (UFPE), Rua Professor Moraes Rêgo, n. 1235, Cidade Universitária, Recife 50670-901, Brazil

2. Advanced Institute of Technology and Innovation (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil

3. Communication and Design Center, Centro Acadêmico da Região Agreste, Federal University of Pernambuco (UFPE), BR 104, Km 59, s/n, Nova Caruaru, Caruaru 50670-901, Brazil

4. Department of Chemical Engineering, Federal University of Pernambuco (UFPE), Avenida dos Economistas—Cidade Universitária, Recife 50740-590, Brazil

5. UNCAP Icam Tech School, Catholic University of Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil

Abstract

Iron oxide nanoparticles have been investigated due to their suitable characteristics for diverse applications in the fields of biomedicine, electronics, water or wastewater treatment and sensors. Maghemite, magnetite and hematite are the most widely studied iron oxide particles and have ferrimagnetic characteristics. When very small, however, these particles have superparamagnetic properties and are called superparamagnetic iron oxide nanoparticles (SPIONs). Several methods are used for the production of these particles, such as coprecipitation, thermal decomposition and microemulsion. However, the variables of the different types of synthesis must be assessed to achieve greater control over the particles produced. In some studies, it is possible to compare the influence of variations in the factors for production with each of these methods. Thus, researchers use different adaptations of synthesis based on each objective and type of application. With coprecipitation, it is possible to obtain smaller, more uniform particles with adjustments in temperature, pH and the types of reagents used in the process. With thermal decomposition, greater control is needed over the time, temperature and proportion of surfactants and organic and aqueous phases in order to produce smaller particles and a narrower size distribution. With the microemulsion process, the control of the confinement of the micelles formed during synthesis through the proportions of surfactant and oil makes the final particles smaller and less dispersed. These nanoparticles can be used as additives for the creation of new materials, such as magnetic bacterial cellulose, which has different innovative applications. Composites that have SPIONs, which are produced with greater rigour with regards to their size and distribution, have superparamagnetic properties and can be used in medical applications, whereas materials containing larger particles have ferromagnetic applications. To arrive at a particular particle with specific characteristics, researchers must be attentive to both the mechanism selected and the production variables to ensure greater quality and control of the materials produced.

Funder

Brazilian development agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Apoio à Ciência e Tecnologia do Estado de Pernambuco

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3