Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review

Author:

Bustamante-Torres MoisesORCID,Romero-Fierro David,Estrella-Nuñez Jocelyne,Arcentales-Vera BelénORCID,Chichande-Proaño Estefani,Bucio EmilioORCID

Abstract

A broad spectrum of nanomaterials has been investigated for multiple purposes in recent years. Some of these studied materials are magnetics nanoparticles (MNPs). Iron oxide nanoparticles (IONPs) and superparamagnetic iron oxide nanoparticles (SPIONs) are MNPs that have received extensive attention because of their physicochemical and magnetic properties and their ease of combination with organic or inorganic compounds. Furthermore, the arresting of these MNPs into a cross-linked matrix known as hydrogel has attracted significant interest in the biomedical field. Commonly, MNPs act as a reinforcing material for the polymer matrix. In the present review, several methods, such as co-precipitation, polyol, hydrothermal, microemulsion, and sol-gel methods, are reported to synthesize magnetite nanoparticles with controllable physical and chemical properties that suit the required application. Due to the potential of magnetite-based nanocomposites, specifically in hydrogels, processing methods, including physical blending, in situ precipitation, and grafting methods, are introduced. Moreover, the most common characterization techniques employed to study MNPs and magnetic gel are discussed.

Funder

Dirección General de Asuntos del Personal Académico (DGAPA), Universidad Nacional Autónoma de México

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference160 articles.

1. Magnetic Nanoparticles;Acidereli,2021

2. Environmental applications of magnetic nanoparticles;Kim,2021

3. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications

4. Hydrogeles and hydrogel composites for 3D and 4D printing applications;Liu,2020

5. Hydrogels;Wang,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3