Hofmeister Series for Conducting Polymers: The Road to Better Electrochemical Activity?

Author:

Volkov Alexey I.1ORCID,Apraksin Rostislav V.2ORCID

Affiliation:

1. Department of Electrochemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia

2. Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021, Russia

Abstract

Poly-3,4-ethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) is a widely used conducting polymer with versatile applications in organic electronics. The addition of various salts during the preparation of PEDOT:PSS films can significantly influence their electrochemical properties. In this study, we systematically investigated the effects of different salt additives on the electrochemical properties, morphology, and structure of PEDOT:PSS films using a variety of experimental techniques, including cyclic voltammetry, electrochemical impedance spectroscopy, operando conductance measurements and in situ UV-VIS spectroelectrochemistry. Our results showed that the electrochemical properties of the films are closely related to the nature of the additives used and allowed us to establish a probable relationship with the Hofmeister series. The correlation coefficients obtained for the capacitance and Hofmeister series descriptors indicate a strong relationship between the salt additives and the electrochemical activity of PEDOT:PSS films. The work allows us to better understand the processes occurring within PEDOT:PSS films during modification with different salts. It also demonstrates the potential for fine-tuning the properties of PEDOT:PSS films by selecting appropriate salt additives. Our findings can contribute to the development of more efficient and tailored PEDOT:PSS-based devices for a wide range of applications, including supercapacitors, batteries, electrochemical transistors, and sensors.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3