Producing Blends of Polybutylene Adipate Terephthalate and Blood Meal That Are Safe to Render

Author:

Verbeek Casparus J. R.1ORCID,Yapa Priyal M.1,Self Rachel2ORCID,Harrison Mark2

Affiliation:

1. Centre for Advanced Materials Manufacturing and Design, Faculty of Engineering, University of Auckland, Auckland 1023, New Zealand

2. School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia

Abstract

Single-use plastic hygiene control products used during red meat processing can have severe negative impacts on the environment and cannot be processed with offal during rendering into meat and bone meal. However, plastics made from protein could potentially solve this problem as the material would be safe to render. The objective of this work was to prepare blends of blood meal and polybutylene adipate terephthalate (PBAT) in the absence of water using the interaction between PBAT and protein as the plasticisation mechanism. The ratio of protein to PBAT (1:1.3), as well as the choice of compatibiliser (PBAT-g-IA), was critical to form a homogenous, compatibilised blend with mechanical properties suitable for injection-moulded hygeine control products. This blend had a tensile strenght of 11.2 MPa, a chord modulus of 492 MPa, and 10% elongation at break. Using less PBAT in the blend, or using Surlyn™ as a compatibiliser, resulted in blends that were either too difficult to process or with inferior mechancial properies. Using simulated rendering, the new material was indistinguishable from tallow or meat and bone meal, suggesting that hygeine control products made from this new material will degrade sufficiently to be safe to render with offal after red meat processing.

Funder

Australian Government Department of Agriculture, Fisheries and Forestry

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3