Transport of Organic Contaminants in Composite Vertical Cut-Off Wall with Defective HDPE Geomembrane

Author:

Lin Hai1ORCID,Huang Wenzhou1,Wang Liangni1,Liu Zhanlei2

Affiliation:

1. School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China

2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210024, China

Abstract

Soil-bentonite vertical cut-off wall is an emergency technique used for contaminant control in geo-environmental engineering, high-density polyethylene (HDPE) geomembrane (GM) with an extremely low-permeability coefficient is expected to enhance the contaminant barrier effect of the vertical cut-off wall. To evaluate the barrier performance of the composite barrier composed of GM and soil-bentonite mixture towards organic contaminant, while also quantitively revealing the impact of GM defects and placement, a one-dimensional transport model for organic contaminants in composite barrier is solved under semi-infinite boundary conditions. The proposed transport model is validated by numerical simulations using COMSOL Multiphysics 5.4, and the effects of GM defect rate, placement within the composite isolation wall, and contact level with soil-bentonite on contaminant transport behavior are further studied. The results show that as the average frequency of GM defects increases from 2.5 to 50 holes per hectare, the breakthrough time of organic contaminants through composite barrier decreases by almost 70%. Poor contact level between GM and soil-bentonite mixture may reduce the breakthrough time of the composite cut-off wall by 65%. Although the selection of GM placement has limited impact on the transient flux of contaminants, it does affect the total flux of contaminants over a certain period of time. The effects of permeability coefficient, effective diffusion coefficient, distribution coefficient, and hydraulic head of the composite cut-off wall can be considered by the proposed analytical solution, which would provide guidance and reference for the design and service performance evaluation of the composite cut-off wall.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3