Experimental Study on the Temperature-Dependent Static, Dynamic, and Post-Dynamic Mechanical Characteristics of Municipal Solid Waste

Author:

Wang Zejin1,Hu Shuyu23,Zhou Jiaxin23,Cui Peng4ORCID,Jiang Ying5

Affiliation:

1. School of Economics and Management, Nanjing Tech University, Nanjing 211800, China

2. Merchant Marine College, Shanghai Maritime University, Shanghai 200135, China

3. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 200135, China

4. Department of Engineering Management, School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China

5. School of Management Engineering, Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China

Abstract

Municipal solid waste (MSW) has huge potential to be recycled as construction material, which would have significant benefits for environmental conservation. However, the cornerstone of this undertaking is a solid comprehension of the mechanical response of MSW in real-world engineering locations, taking into account the effects of stress levels and temperature. In this paper, well-mixed MSW samples were sieved and crushed to produce standardized specimens in cylindrical molds. A series of static, dynamic, and post-cyclic shear tests were conducted on the MSW at temperatures ranging from 5 °C to 80 °C with normal stresses of 50 kPa, 100 kPa, and 150 kPa. The experimental findings demonstrate that the static, dynamic, and post-cyclic mechanical response of MSW presents temperature range-dependency; temperature variation between 5 °C and 20 °C affects MSW’s mechanical reaction more than variation in temperature between 40 °C and 80 °C under various stress settings; at 5 °C~80 °C, the static peak shear strength of MSW is the highest, being followed by the post-cyclic peak shear strength, while the dynamic peak shear strength is the lowest; the sensitivity of the dynamic shear strength of MSW to temperature variation is the largest, being followed by the post-cyclic peak shear strength, and the static peak shear strength is the lowest.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3