Gene Association Classification for Autism Spectrum Disorder: Leveraging Gene Embedding and Differential Gene Expression Profiles to Identify Disease-Related Genes

Author:

Suratanee Apichat12ORCID,Plaimas Kitiporn34ORCID

Affiliation:

1. Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

2. Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

3. Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

4. Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Identifying genes associated with autism spectrum disorder (ASD) is crucial for understanding the underlying mechanisms of the disorder. However, ASD is a complex condition involving multiple mechanisms, and this has resulted in an unclear understanding of the disease and a lack of precise knowledge concerning the genes associated with ASD. To address these challenges, we conducted a systematic analysis that integrated multiple data sources, including associations among ASD-associated genes and gene expression data from ASD studies. With these data, we generated both a gene embedding profile that captured the complex relationships between genes and a differential gene expression profile (built from the gene expression data). We utilized the XGBoost classifier and leveraged these profiles to identify novel ASD associations. This approach revealed 10,848 potential gene–gene associations and inferred 125 candidate genes, with DNA Topoisomerase I, ATP Synthase F1 Subunit Gamma, and Neuronal Calcium Sensor 1 being the top three candidates. We conducted a statistical analysis to assess the relevance of candidate genes to specific functions and pathways. Additionally, we identified sub-networks within the candidate network to uncover sub-groups of associations that could facilitate the identification of potential ASD-related genes. Overall, our systematic analysis, which integrated multiple data sources, represents a significant step towards unraveling the complexities of ASD. By combining network-based gene associations, gene expression data, and machine learning, we contribute to ASD research and facilitate the discovery of new targets for molecularly targeted therapies.

Funder

King Mongkut’s University of Technology North Bangkok

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3