Development and Characterization of N/S-Carbon Quantum Dots by Valorizing Greek Crayfish Food Waste

Author:

Kechagias Achilleas1,Lykos Christos1ORCID,Karabagias Vassilios K.2,Georgopoulos Stavros2,Sakavitsi Viktoria3,Leontiou Areti2ORCID,Salmas Constantinos E.3ORCID,Giannakas Aris E.2ORCID,Konstantinou Ioannis14

Affiliation:

1. Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece

2. Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece

3. Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece

4. University Research and Innovation Center, Institute of Environment and Sustainable Development, University of Ioannina, 451110 Ioannina, Greece

Abstract

The valorization of food industry byproducts has become a significant issue worldwide because of the drive towards a circular economy. The “zero waste target” in human activities seems to be a dominant objective in the design of future products by enterprises. In this work, food waste from the crayfish processing industry was converted into useful products (quantum dots), as nowadays, biowaste-derived materials tend to be more attractive than conventionally produced materials with a similar structure due to their lower production costs and environmentally friendly development processes. More specifically, shell waste from the crayfish industry was treated hydrothermally and, after a freeze-drying process, was transformed to useful quantum dots. Instrumental and chemical techniques, such as XRD, SEM-EDS, AFM, XPS, elemental analysis, fluorescence spectroscopy, TG, Microtox bioassay, and DPPH antioxidant activity, were employed to characterize the final product. The results indicated the existence of thermally stable spherical particles, with a diameter of 5–8 nm, which were mainly composed of carbon, oxygen, nitrogen, calcium, and sulfur. Their external surface was rough and rich with various functional groups that further contributed to their overall optical properties. The final product presented low ecotoxicity, as studied by the Microtox assay. The superior antioxidant activity of this product compared to other similar materials reported elsewhere renders it a potential material for, e.g., food packaging applications. In addition, for the first time, N/S-Carbon QDs were applied as an antioxidant/antibacterial agent for strawberry preservation, showing promising results as the coated strawberries maintained their color and weight for three consecutive days with no mold growth observed on their surface.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3