Control of Quarter-Car Active Suspension System Based on Optimized Fuzzy Linear Quadratic Regulator Control Method

Author:

Abut Tayfun1ORCID,Salkim Enver23

Affiliation:

1. Department of Mechanical Engineering, Muş Alparslan University, 49100 Muş, Turkey

2. Department of Electronics and Automation, Muş Alparslan University, 49100 Muş, Turkey

3. Department of Electronics and Electrical Engineering, University College London (UCL), London WC1E 7JE, UK

Abstract

Vehicle suspension systems, which affect driving performance and passenger comfort, are actively researched with the development of technology and the insufficient quality of passive suspension systems. This paper establishes the suspension model of a quarter of the car and active control is realized. The suspension model was created using the Lagrange–Euler method. LQR, fuzzy logic control (FLC), and fuzzy-LQR control algorithms were developed and applied to the suspension system for active control. The purpose of these controllers is to improve car handling and passenger comfort. Undesirable vibrations occur in passive suspension systems. These vibrations should be reduced using the proposed control methods and a robust system should be developed. To enhance the performance of the fuzzy logic control (FLC) and fuzzy-LQR control methods, the optimal values of the coefficients of the points where the feet of the member functions touch are calculated using the particle swarm optimization (PSO) algorithm. Then, the designed controllers were simulated in the computer environment. The success of the control performance of the applied methods concerning the passive suspension system was compared in percentages. The results are presented and evaluated graphically and numerically. Using the integral time-weighted absolute error (ITAE) criterion, the methods were compared with each other and with the studies in the literature. As a result, it was found that the proposed control method (fuzzy-LQR) is about 84.2% more successful in body motion, 90% in car acceleration, 84.5% in suspension deflection, and 86.7% in tire deflection compared to the studies in the literature. All these results show that the car’s ride comfort has been significantly improved.

Funder

University College London

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3