Reinforcement-Learning-Based Vibration Control for a Vehicle Semi-Active Suspension System via the PPO Approach

Author:

Han Shi-YuanORCID,Liang Tong

Abstract

The vehicle semi-active suspension system plays an important role in improving the driving safety and ride comfort by adjusting the coefficients of the damping and spring. The main contribution of this paper is the proposal of a PPO-based vibration control strategy for a vehicle semi-active suspension system, in which the designed reward function realizes the dynamic adjustment according to the road condition changes. More specifically, for the different suspension performances caused by different road conditions, the three performances of the suspension system, body acceleration, suspension deflection, and dynamic tire load, were taken as the state space of the PPO algorithm, and the reward value was set according to the numerical results of the passive suspension, so that the corresponding damping force was selected as the action space, and the weight matrix of the reward function was dynamically adjusted according to different road conditions, so that the agent could have a better improvement effect at different speeds and road conditions. In this paper, a quarter–car semi-active suspension model was analyzed and simulated, and numerical simulations were performed using stochastic road excitation for different classes of roads, vehicle models, and continuously changing road conditions. The simulation results showed that the body acceleration was reduced by 46.93% under the continuously changing road, which proved that the control strategy could effectively improve the performance of semi-active suspension by combining the dynamic changes of the road with the reward function.

Funder

Natural Science Foundation of Shandong Province for Key Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3