Long-Range Navigation in Complex and Dynamic Environments with Full-Stack S-DOVS

Author:

Martinez-Baselga Diego1ORCID,Riazuelo Luis1ORCID,Montano Luis1ORCID

Affiliation:

1. Engineering Research Institute of Aragon (I3A), University of Zaragoza, 50018 Zaragoza, Spain

Abstract

Robotic autonomous navigation in dynamic environments is a complex problem, as traditional planners may fail to take dynamic obstacles and their variables into account. The Strategy-based Dynamic Object Velocity Space (S-DOVS) planner has been proposed as a solution to navigate in such scenarios. However, it has a number of limitations, such as inability to reach a goal in a large known map, avoid convex objects, or handle trap situations. In this article, we present a modified version of the S-DOVS planner that is integrated into a full navigation stack, which includes a localization system, obstacle tracker, and novel waypoint generator. The complete system takes into account robot kinodynamic constraints and is capable of navigating through large scenarios with known map information in the presence of dynamic obstacles. Extensive simulation and ground robot experiments demonstrate the effectiveness of our system even in environments with dynamic obstacles and replanning requirements, and show that our waypoint generator outperforms other approaches in terms of success rate and time to reach the goal when combined with the S-DOVS planner. Overall, our work represents a step forward in the development of robust and reliable autonomous navigation systems for real-world scenarios.

Funder

Spanish projects

Aragon Government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3