Development of High-Power Ultrasonic System Dedicated to Metal Powder Atomization

Author:

Kustron Pawel1ORCID,Korzeniowski Marcin1ORCID,Sajbura Adam1,Piwowarczyk Tomasz1,Kaczynski Pawel1ORCID,Sokolowski Pawel1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 5, 50-371 Wroclaw, Poland

Abstract

The article presents the results of the development works and research on the atomization process carried out using two prototype high-power ultrasonic systems. Ultrasonic systems have been designed to develop a new metal powder production process; these materials are increasingly used in modern manufacturing processes such as additive technologies or spraying and surfacing processes. The preliminary studies presented in the article were conducted for water to assess the effectiveness of both systems and to verify the theoretical and structural assumptions. In ultrasonic atomization, the ultrasonic wave causes the phenomenon of cavitation, which leads to the overcoming of the surface tension forces of the liquid and its disintegration into fine droplets. The important parameters that affect the properties of the produced droplets include, among others, the frequency of the sonotrode vibrations and the amplitude of the vibrations of the working plate. As part of the research, the paper presents the process of selecting the sonotrode geometry for two different values of the transducer’s natural frequencies (20 kHz and 70 kHz). In the design process, the finite element method was used to perform a harmonic analysis and develop the geometry of the sonotrode and the working plate. The design assumptions and the design process were presented. The modeled and then ultrasonic waveguides were verified experimentally by measuring the deflection distribution on the working plate surface using a high-precision laser displacement sensor. Then, the work ultimately resulted in conducting atomization tests of water. The obtained aerosols and the mechanism of their formation were studied using a high-speed camera. Finally, using Matlab R2020a software and image analysis scripts, it was possible to analyze the droplet size distribution generated by both systems. It was observed that 50% of the produced droplets were in the range of 35–55 μm for a 20 kHz system, while for a 70 kHz system it was 10–25 μm, which is a very satisfying distribution in terms of metal powder atomization.

Funder

National Center for Research and Development in Poland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3