Rotating Sonotrode Design for Ultrasonic-Assisted Arc Welding of Metal Materials

Author:

Mao Xinyu1,Yang Zhidong1,Chen Qihao1,Hu Mingzhu1,Gan Tian2

Affiliation:

1. Provincial Key Laboratory of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2. Nanjing KathMatic Technology Co., Ltd., Nanjing 211100, China

Abstract

In the process of the ultrasonic-assisted arc welding of metal materials, traditional ultrasonic application methods, such as the low-frequency impact of ultrasonic horns on a base material, can easily cause the non-fusion defect. In order to solve this problem, a rotating sonotrode with a groove and double thin ends was designed in this study. The ultrasonic vibration is transmitted into the weld pool by the rolling of the sonotrode on both sides of the weld. The resonant frequency was set at 50 kHz. Firstly, based on the Mindlin theory, a rotating sonotrode without a groove was designed by solving the frequency equation and by conducting a finite element simulation. Secondly, the effects of the groove, perforation, and transition mode on the resonant frequency, stress distribution, and amplification factor were investigated by finite element simulation. Finally, the optimum rotating sonotrode with a groove was obtained. The results show that the size of a rotating sonotrode that has a small frequency error can be obtained by using the discrete interval solver method combined with finite element simulation. The groove can significantly reduce the resonant frequency. The stress concentration can be effectively reduced by using the elliptical transition mode. The resonant frequency and amplification factor of a rotating sonotrode with a groove could be effectively adjusted by a method of double-position joint perforation. The final resonant frequency was 49.721 kHz and the amplification factor was 3.02. This study provides an effective design method for a sonotrode with double thin ends and a groove structure.

Funder

Jiangsu Province “innovative and entrepreneurial doctor” Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3