Enhanced Distributed Non-Linear Voltage Regulation and Power Apportion Technique for an Islanded DC Microgrid

Author:

Lasabi Olanrewaju1ORCID,Swanson Andrew1ORCID,Jarvis Leigh1ORCID,Aluko Anuoluwapo2ORCID,Brown Matthew1ORCID

Affiliation:

1. Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa

2. Power Research Laboratory, Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

There is a growing focus on exploring direct current (DC) microgrids in traditional power grids. A key challenge in operating these microgrids is ensuring proper current distribution among converters. While conventional droop control has been used to address this issue, it requires compensating for voltage deviations in the DC bus. This paper introduces an innovative distributed secondary control approach that effectively addresses both voltage restoration and current sharing challenges within a standalone DC microgrid. The distributed secondary control proposed in this study is integrated into the microgrid’s cyber layer, enabling information sharing between controllers. This distributed approach ensures reliability, even in the event of partial communication connection failures. The controller employs a fuzzy logic control approach to dynamically determine the parameters of the secondary control, resulting in an enhanced control response. Additionally, the proposed approach can handle constant power and resistive loads without specific requirements. Employing the Lyapunov method, we have derived adequate stability conditions for the proposed controller. The performance of the controller has been assessed using MATLAB/Simulink® models and validated with real-time experimental testing performed with a SpeedgoatTM real-time machine, considering five different test cases. The results indicated that the proposed control system is robust in achieving its control objectives within a DC microgrid, exhibiting fast response and minimal oscillations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3