Virtual oscillator with delayed feedback for transient mitigation in inverter-based islanded microgrids

Author:

Salim Sanjna1ORCID,Babu Chembathu Ayyappan1ORCID,Krishna Bindu Murali2ORCID

Affiliation:

1. Department of Electrical Engineering, School of Engineering, Cochin University of Science and Technology, Kerala, India

2. Sophisticated Test and Instrumentation Centre, Cochin University of Science and Technology, Kerala, India

Abstract

In recent years, the conventional control schemes for renewable energy-based inverter-dominated microgrids have been expeditiously replaced by Virtual Oscillator-based Control (VOC). The method of VOC ensures fast synchronisation and efficient load-sharing capabilities in inverter-based renewable energy systems. This work evaluates the effectiveness of VOC-based inverters in mitigating the transient dynamics of power system parameters like voltage, frequency and current under different types of switching events involving active and reactive load combinations. Further, to enhance the control efficiency of VOC under such load-switching scenarios a modified form of VOC is proposed utilizing the ability of the feedback mechanism to strengthen the state space trajectory of dynamical systems. In the proposed method, the control oscillator of conventional VOC driven by the inverter current is modified by providing a feedback signal in the form of an integral function of the error between the drive oscillator and the trajectory of the inverter output. The efficiencies of different forms of feedback are quantified in terms of percentage deviation in power system parameters as well as THD. The proposed feedback strategy can improve the control performance by bringing down the voltage deviation from 57 % in conventional VOC to around 4%. Likewise, the frequency deviation is brought down to 0.14% from 19.26 %. These advantages are achieved without any significant adverse impact on the THD. The proposed approach can be utilized in multi-inverter-based systems serving sensitive loads in microgrids.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3