ARBIN: Augmented Reality Based Indoor Navigation System

Author:

Huang Bo-ChenORCID,Hsu Jiun,Chu Edward T.-H.ORCID,Wu Hui-Mei

Abstract

Due to the popularity of indoor positioning technology, indoor navigation applications have been deployed in large buildings, such as hospitals, airports, and train stations, to guide visitors to their destinations. A commonly-used user interface, shown on smartphones, is a 2D floor map with a route to the destination. The navigation instructions, such as turn left, turn right, and go straight, pop up on the screen when users come to an intersection. However, owing to the restrictions of a 2D navigation map, users may face mental pressure and get confused while they are making a connection between the real environment and the 2D navigation map before moving forward. For this reason, we developed ARBIN, an augmented reality-based navigation system, which posts navigation instructions on the screen of real-world environments for ease of use. Thus, there is no need for users to make a connection between the navigation instructions and the real-world environment. In order to evaluate the applicability of ARBIN, a series of experiments were conducted in the outpatient area of the National Taiwan University Hospital YunLin Branch, which is nearly 1800 m2, with 35 destinations and points of interests, such as a cardiovascular clinic, x-ray examination room, pharmacy, and so on. Four different types of smartphone were adopted for evaluation. Our results show that ARBIN can achieve 3 to 5 m accuracy, and provide users with correct instructions on their way to the destinations. ARBIN proved to be a practical solution for indoor navigation, especially for large buildings.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3