Accounting for Local Geological Variability in Sequential Simulations—Concept and Application

Author:

Linsel AdrianORCID,Wiesler Sebastian,Haas Joshua,Bär KristianORCID,Hinderer Matthias

Abstract

Heterogeneity-preserving property models of subsurface regions are commonly constructed by means of sequential simulations. Sequential Gaussian simulation (SGS) and direct sequential simulation (DSS) draw values from a local probability density function that is described by the simple kriging estimate and the local simple kriging variance at unsampled locations. The local simple kriging variance, however, does not necessarily reflect the geological variability being present at subsets of the target domain. In order to address that issue, we propose a new workflow that implements two modified versions of the popular SGS and DSS algorithms. Both modifications, namely, LVM-DSS and LVM-SGS, aim at simulating values by means of introducing a local variance model (LVM). The LVM is a measurement-constrained and geology-driven global representation of the locally observable variance of a property. The proposed modified algorithms construct the local probability density function with the LVM instead of using the simple kriging variance, while still using the simple kriging estimate as the best linear unbiased estimator. In an outcrop analog study, we can demonstrate that the local simple kriging variance in sequential simulations tends to underestimate the locally observed geological variability in the target domain and certainly does not account for the spatial distribution of the geological heterogeneity. The proposed simulation algorithms reproduce the global histogram, the global heterogeneity, and the considered variogram model in the range of ergodic fluctuations. LVM-SGS outperforms the other algorithms regarding the reproduction of the variogram model. While DSS and SGS generate a randomly distributed heterogeneity, the modified algorithms reproduce a geologically reasonable spatial distribution of heterogeneity instead. The new workflow allows for the integration of continuous geological trends into sequential simulations rather than using class-based approaches such as the indicator simulation technique.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3