Addressing Application Challenges with Large-Scale Geological Boundary Modelling

Author:

Ball Adrian,Zigman John,Melkumyan Arman,Chlingaryan Anna,Silversides Katherine,Leung Raymond

Abstract

AbstractFor banded iron formation-hosted deposits accurate boundary modelling is critical to ore-grade estimation. Key to estimation fidelity is the accurate separation of the different domains within the ore body, requiring modelling of the boundaries between domains. This yields both theoretical and application challenges. We present a series of solutions for application challenges that arise when modelling large-scale boundaries employing a composition of Gaussian Process models on exploration and production hole data. We demonstrate these in the banded iron formation-hosted iron ore deposits in the Hamersley Province of Western Australia. We present solutions to several challenges: the inclusion of information derived from a geologist-defined boundary estimate to incorporate domain knowledge in data sparse regions, the incorporation of unassayed production holes that are implicitly defined as waste to augment production hole assay data, and a more holistic method of defining regional bounds and spatial rotations for Gaussian Process modelling of local spaces. Solution are evaluated against a range of metrics to show performance improvements over the manually performed estimation by an expert geologist of the boundaries delineating the ore body domains. Reconcilliation scores are used for evaluating the quality of predicted domain boundaries against measured production data. The predicted and in situ surfaces are also qualitatively evaluated against production data to ensure that the models were evaluated to be geologically sound by an expert in the field. In particular, better fidelity is shown when separating mineralised and non-mineralised ore, consequently improving the estimation of the ore-grades present in the mine site.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3