Comparison of Satellite Soil Moisture Products in Mongolia and Their Relation to Grassland Condition

Author:

Vova Oyudari,Kappas MartinORCID,Rafiei Emam Ammar

Abstract

Monitoring of soil moisture dynamics provides valuable information about grassland degradation, since soil moisture directly affects vegetation cover. While the Mongolian soil moisture monitoring network is limited to the urban and protected natural areas, remote sensing data can be used to determine the soil moisture status elsewhere. In this paper, we determine whether in situ and remotely sensed data in the unaccounted areas of Southwestern Mongolia are consistent with each other, by comparing Soil Moisture and Ocean Salinity (SMOS) first passive L-band satellite data with in situ measurements. To evaluate the soil moisture products, we calculated the temporal, seasonal, and monthly average soil moisture content. We corrected the bias of SMOS soil moisture (SM) data using the in situ measured soil moisture with both the simple ratio and gamma methods. We verified the bias-corrected SMOS data with Nash–Sutcliffe method. The comparison results suggest that bias correction (of the simple ratio and gamma methods) enhances the reliability of the SMOS data, resulting in a higher correlation coefficient. We then examined the correlation between SMOS and Normalized Difference Vegetation Index (NDVI) index in the various ecosystems. Analysis of the SMOS and in situ measured soil moisture data revealed that spatial soil moisture distribution matches the rainfall events in Southwestern Mongolia for the period 2010 to 2015. The results illustrate that the bias-corrected, monthly-averaged SMOS data has a high correlation with the monthly-averaged NDVI (R2 > 0.81). Both NDVI and rainfall can be used as indicators for grassland monitoring in Mongolia. During 2015, we detected decreasing soil moisture in approximately 30% of the forest-steppe and steppe areas. We assume that the current ecosystem of land is changing rapidly from forest to steppe and also from steppe to desert. The rainfall rate is the most critical factor influencing the soil moisture storage capacity in this region. The collected SMOS data reflects in situ conditions, making it an option for grassland studies.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3