Effects of Groundwater Depth and Salt Content on Vegetation in Dry Lake Basins: A Case Study of Chahan Lake, Northern China

Author:

Chen Peng1,Ma Rong1ORCID,Shi Jiansheng2,Si Letian3

Affiliation:

1. The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, 050061 Hebei, China

2. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China

3. Hebei GEO University, Shijiazhuang, 050031 Hebei, China

Abstract

Under the dual influences of global climate change and human activities, inland lakes in arid areas are shrinking and drying up, and a large area of bare lake bed has become the source of the release of chemical dust. The aim of this study is to study the control of groundwater on the distribution and development of natural vegetation and the effects of the groundwater conditions on soil salinization. In this study, a typical modern dry lake in northern China, Chahan Lake, was taken as the study area. Through field investigations, field sampling and analysis, and statistical analysis, the influence of groundwater on the ecosystem of this dry lake was studied. The results revealed that the vegetation communities in the lakeside zone were Kalidium foliatum, Nitraria tangutorum, Suaeda glauca, Leymus chinensis, Chloris virgata, and Carex duriuscula communities from the dry lake bed outwards. The groundwater table suitable for vegetation growth in Chahan Lake is 2.0–3.0 m deep. The groundwater table suitable for the growth of Kalidium foliatum vegetation is 1.5–2.5 m deep. The groundwater table suitable for the growth of Leymus chinensis vegetation is 3.0–4.0 m deep. In Chahan Lake, the critical groundwater depth and total dissolved solids (TDS) for moderate salinization, severe salinization, and saline soil occurrence are 4.0 m and 2.0 g/L, 3.0 m and 3.0 g/L, and 1.5 m and 4.0 g/L, respectively. Regarding the prevention and control of salt-dust storms, the ecological threshold of the groundwater, which can effectively increase the vegetation coverage and prevent soil salinization, is groundwater depths of 2.0–4.0 m and TDS values of <2 g/L.

Funder

Institute of Hydrogeology and Environmental Geology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3