Investigation of the Near-Tip Stress Field of a Notch Terminating at a Bi-Material Interface

Author:

Mieczkowski GrzegorzORCID,Szpica DariuszORCID,Borawski AndrzejORCID,Awad Mohamed M.ORCID,Elgarayhi Ahmed,Sallah MohammedORCID

Abstract

The article deals with the problem of a sharp corner, the tip of which is located on the bi-material interface. The paper presents a qualitative and quantitative description of singular stress fields occurring in the tip area of such a stress concentrator. The qualitative description was obtained by solving the problem of the plane theory of elasticity with appropriately defined boundary conditions. To obtain a quantitative description, it was necessary to determine the values of generalised stress intensity factors (GSIFs). The GSIFs were determined using the developed analytical-numerical method. The calculations were made for various load variants (uniaxial/biaxial tension load, shear load) and notch positions (single/double edge-notched plate, centre-notched plate). Additionally, the impact of notch geometry (height and opening angle) and relative stiffness (Young’s moduli ratio of both components of bi-material) on GSIFs was investigated. It has been noticed that with a decrease in the relative stiffness and an increase in the notch angle or its height, the normalised GSIFs values increased. The obtained results were compared with the data available in the literature and their satisfactory agreement with those presented by other scientists was found.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. The phenomena of rupture and flow in solids;Griffits;Philos. Trans. R. Soc. London Ser. A Contain. Pap. A Math. Phys. Character,1921

2. Strain-energy-density factor applied to mixed mode crack problems

3. Ductile Fracture Instability in Shear

4. A failure criterion for brittle elastic materials under mixed-mode loading

5. Cracks in materials possessing homogeneous anisotropy;Sih,1981

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3