Analysis and Prediction of the Dynamic Antiplane Characteristics of an Elastic Wedge-Shaped Quarter-Space Containing a Circular Hole

Author:

Liu Shen1ORCID,Yang Jie1ORCID,Liu Yue1,Liu Qin1

Affiliation:

1. School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China

Abstract

Based on the wave function expansion method, the dynamic antiplane characteristics of a wedge-shaped quarter-space containing a circular hole are studied in a complex coordinate system. The wedge-shaped medium is decomposed into two subregions along the virtual boundary using the virtual region decomposition method. The scattering wave field in subregion I is constructed by the mirror method, and the standing wave field in region II is constructed by the fractional Bessel function. According to the continuity conditions at the virtual boundary and the stress-free boundary of the circular hole, the unknown coefficients of the wave fields are obtained by the Fourier integral transform, and the analytical solution of the dynamic stress concentration factor (DSCF) of the circular hole is then obtained. Through parametric analysis, the effects of incident wave frequency, geometry of the wedge, and corner slope on the DSCF of the circular hole are discussed. The results show that when the SH-wave is horizontally incidence at high frequencies, the DSCF of the circular hole can be significantly changed by introducing the corner slope. Moreover, when the corner slope is high, the maximum DSCF can be amplified about 1.2 times. Finally, the back propagation (BP) neural network prediction model of DSCF is established, and the coefficient of regression is found to reach more than 0.99.

Funder

Shanghai “Chenguang” Program

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3