Determination of stress intensity factors for elements with sharp corner located on the interface of a bi-material structure or homogeneous material

Author:

Mieczkowski GrzegorzORCID

Abstract

AbstractThis paper presents a new universal analytical and numerical method allowing for determination of stress intensity factors (SIFs) for notches and cracks located in both a homogeneous and a heterogeneous material. An advantage of the proposed method is that it does not require knowledge of an analytical description of singular stress/displacement fields or connection of SIFs to energy parameters such as energy release factor. In this method, a universal analytical function has been used, which in combination with data obtained using finite element method (FEM) allows for a direct determination of stress intensity factors. One parameter that is necessary to know when using the proposed method is the eigenvalue$$\lambda $$λ. The characteristic equation allowing for determination of the eigenvalues for any corner has been given herein. What is more, also a criterion clearly defining the nodes is determined, from which FEM numerical results are implemented to the developed analytical function. In order to verify the proposed method, for a selected group of geometrical and material structures with sharp corner, values of stress intensity factors were determined and compared to data available in the literature. Satisfactory compliance of obtained results with literature ones was found.

Funder

Ministerstwo Nauki i Szkolnictwa Wyzszego

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3