On the Decrease in Transformation Stress in a Bicrystal Cu-Al-Mn Shape-Memory Alloy during Cyclic Compressive Deformation

Author:

Su Tung-Huan,Lu Nian-Hu,Chen Chih-HsuanORCID,Chen Chuin-ShanORCID

Abstract

The evolution of the inhomogeneous distribution of the transformation stress (σs) and strain fields with an increasing number of cycles in two differently orientated grains is investigated for the first time using a combined technique of digital image correlation and data-driven identification. The theoretical transformation strains (εT) of these two grains with crystal orientations [5 3 26]β and [6 5 11]β along the loading direction are 10.1% and 7.1%, respectively. The grain with lower εT has a higher σs initially and a faster decrease in σs compared with the grain with higher εT. The results show that the grains with higher σs might trigger more dislocations during the martensite transformation, and thus result in greater residual strain and a larger decrease in σs during subsequent cycles. Grain boundary kinking in bicrystal induces an additional decrease in transformation stress. We conclude that a grain with crystal orientation that has high transformation strain and low transformation stress (with respect to loading direction) will exhibit stable transformation stress, and thus lead to higher functional performance in Cu-based shape memory alloys.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3