Effect of High-Pressure Torsion on the Microstructure and Magnetic Properties of Nanocrystalline CoCrFeNiGax (x = 0.5, 1.0) High Entropy Alloys

Author:

Shkodich Natalia,Staab Franziska,Spasova Marina,Kuskov Kirill V.ORCID,Durst Karsten,Farle MichaelORCID

Abstract

In our search for an optimum soft magnet with excellent mechanical properties which can be used in applications centered around “electro mobility”, nanocrystalline CoCrFeNiGax (x = 0.5, 1.0) bulk high entropy alloys (HEA) were successfully produced by spark plasma sintering (SPS) at 1073 K of HEA powders produced by high energy ball milling (HEBM). SPS of non-equiatomic CoCrFeNiGa0.5 particles results in the formation of a single-phase fcc bulk HEA, while for the equiatomic CoCrFeNiGa composition a mixture of bcc and fcc phases was found. For both compositions SEM/EDX analysis showed a predominant uniform distribution of the elements with only a small number of Cr-rich precipitates. High pressure torsion (HPT) of the bulk samples led to an increased homogeneity and a grain refinement: i.e., the crystallite size of the single fcc phase of CoCrFeNiGa0.5 decreased by a factor of 3; the crystallite size of the bcc and fcc phases of CoCrFeNiGa—by a factor of 4 and 10, respectively. The lattice strains substantially increased by nearly the same extent. After HPT the saturation magnetization (Ms) of the fcc phase of CoCrFeNiGa0.5 and its Curie temperature increased by 17% (up to 35 Am2/kg) and 31.5% (from 95 K to 125 K), respectively, whereas the coercivity decreased by a factor of 6. The overall Ms of the equiatomic CoCrFeNiGa decreased by 34% and 55% at 10 K and 300 K, respectively. At the same time the coercivity of CoCrFeNiGa increased by 50%. The HPT treatment of SPS-consolidated HEAs increased the Vickers hardness (Hv) by a factor of two (up to 5.632 ± 0.188) only for the non-equiatomic CoCrFeNiGa0.5, while for the equiatomic composition, the Hv remained unchanged (6.343–6.425 GPa).

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3