Effect of Deformation on the Magnetic Properties of CrMnFeCoNi and CrMnFeCoNi-CN High-Entropy Alloys

Author:

Torres-Mejía L. G.,Parra-Vargas C. A.,Lentz J.,Weber S.,Mujica-Roncery L.

Abstract

AbstractThe magnetic behavior of two high-entropy alloys, CrMnFeCoNi and CrMnFeCoNi-CN, was investigated under varying degrees of deformation through uniaxial tensile tests. Microstructural, morphological, and crystalline structural analyses using XRD and SEM revealed a uniform and stable austenitic structure in all samples, with no presence of α’-martensite or ε-martensite phases. The main deformation mechanisms identified were twinning and slip dislocation for the CrMnFeCoNi-CN alloy, and slip dislocation for the CrMnFeCoNi alloy at room temperature. The alloys exhibited low magnetic moments attributed to magnetically frustrated configurations. At temperatures below 70 K, distinct magnetic states were observed ranging from paramagnetic to ferrimagnetic and spin-glass-like behavior. Antiferromagnetic interactions were confirmed by a negative paramagnetic Curie temperature for both alloys. The magnetization of the CrMnFeCoNi alloy increased with deformation, reflected in effective magnetic moments varying from 1.81 (0 pct) to 2.60 (20 pct) μB, while for the CrMnFeCoNi-CN alloy remained stable around 2.39 to 2.48 μB. The magnetization of the CrMnFeCoNi-CN alloy was found to be higher than that of the CrMnFeCoNi alloy, suggesting that the presence of C and N as alloying elements can enhance magnetization to some extent.

Funder

Universidad Pedagogica y Tecnologica de Colombia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3