An Optimized Smoke Segmentation Method for Forest and Grassland Fire Based on the UNet Framework

Author:

Hu Xinyu12,Jiang Feng12,Qin Xianlin12,Huang Shuisheng12,Yang Xinyuan12,Meng Fangxin12

Affiliation:

1. Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China

2. Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China

Abstract

Smoke, a byproduct of forest and grassland combustion, holds the key to precise and rapid identification—an essential breakthrough in early wildfire detection, critical for forest and grassland fire monitoring and early warning. To address the scarcity of middle–high-resolution satellite datasets for forest and grassland fire smoke, and the associated challenges in identifying smoke, the CAF_SmokeSEG dataset was constructed for smoke segmentation. The dataset was created based on GF-6 WFV smoke images of forest and grassland fire globally from 2019 to 2022. Then, an optimized segmentation algorithm, GFUNet, was proposed based on the UNet framework. Through comprehensive analysis, including method comparison, module ablation, band combination, and data transferability experiments, this study revealed that GF-6 WFV data effectively represent information related to forest and grassland fire smoke. The CAF_SmokeSEG dataset was found to be valuable for pixel-level smoke segmentation tasks. GFUNet exhibited robust smoke feature learning capability and segmentation stability. It demonstrated clear smoke area delineation, significantly outperforming UNet and other optimized methods, with an F1-Score and Jaccard coefficient of 85.50% and 75.76%, respectively. Additionally, augmenting the common spectral bands with additional bands improved the smoke segmentation accuracy, particularly shorter-wavelength bands like the coastal blue band, outperforming longer-wavelength bands such as the red-edge band. GFUNet was trained on the combination of red, green, blue, and NIR bands from common multispectral sensors. The method showed promising transferability and enabled the segmentation of smoke areas in GF-1 WFV and HJ-2A/B CCD images with comparable spatial resolution and similar bands. The integration of high spatiotemporal multispectral data like GF-6 WFV with the advanced information extraction capabilities of deep learning algorithms effectively meets the practical needs for pixel-level identification of smoke areas in forest and grassland fire scenarios. It shows promise in improving and optimizing existing forest and grassland fire monitoring systems, providing valuable decision-making support for fire monitoring and early warning systems.

Funder

Fundamental Research Funds for the Central Non-profit Research Institution of CAF

ational Science and Technology Major Project of China’s High Resolution Earth Observation System

Publisher

MDPI AG

Reference53 articles.

1. Vegetation fires in the Anthropocene;Bowman;Nat. Rev. Earth Environ.,2020

2. A function-based typology for Earth’s ecosystems;Keith;Nat. Commun.,2022

3. On the three major recycling pathways in terrestrial ecosystems;Pausas;Trends Ecol. Evol.,2020

4. Toward a more ecologically informed view of severe forest fires;Hutto;Ecosphere,2016

5. A Review on forest fire detection techniques: A decadal perspective;Chowdary;Networks,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3