Recent Advances in the Development of Automotive Catalytic Converters: A Systematic Review

Author:

Robles-Lorite Laura1,Dorado-Vicente Rubén1ORCID,Torres-Jiménez Eloísa1ORCID,Bombek Gorazd2,Lešnik Luka2

Affiliation:

1. Department of Mechanical and Mining Engineering, University of Jaén, Campus las Lagunillas, s/n, 23071 Jaén, Spain

2. Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia

Abstract

Despite the current boost in the use of electric vehicles to reduce the automotive sector’s footprint, combustion vehicles are and will be present in our cities in both the immediate and long term. In this sense, catalytic converters, which are exhaust gas post-treatment systems for vehicle emission control, are critical for complying with increasingly stringent environmental regulations. This work proposes a systematic review to identify the most relevant knowledge regarding the parameters (materials, geometries, and engine conditions), conditions (cold start, oxygen storage, and deactivation), and mathematical models to consider in the design of catalytic converters. The Scopus database contains 283 records related to this review’s objective. After applying the inclusion and exclusion criteria, 65 reports were retrieved for evaluation. A table was created to present the results and prepare this manuscript. The evaluation revealed that the following topics were active: the study of non-noble catalyst materials, as well as new substrate materials and geometries, for designing more compact and cost-effective catalytic converters; the development of strategies to improve conversion during cold starts; and the development of accurate and fast estimation models.

Funder

Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía

University of Jaén

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3