Coordinated Optimal Dispatch of Electricity and Heat Integrated Energy Systems Based on Fictitious Node Method

Author:

Zeng Aidong12ORCID,Wang Jiawei1,Wan Yaheng1

Affiliation:

1. School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China

2. Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing 211100, China

Abstract

In an electricity and heat integrated energy system, the transmission of thermal energy encounters significant delays, and the delays are often not integer multiples of the dispatch interval. This mismatch poses challenges for achieving coordinated dispatch with the electric power system. To address this problem, the fictitious node method is proposed in this paper, offering a novel approach to calculating the quasi-dynamic characteristics of the heating network. Furthermore, to enhance the local consumption capacity of wind power, the heat storage capacity of the heat supply network was taken into consideration in this study, and a combined energy supply model equipped with electric boilers, incorporating combined heat and power (CHP) units and gas turbine units, was developed. This model effectively expands the operational range of CHP units and enables the decoupling of electricity and heat operations in gas turbine units. The analysis conducted demonstrated the effectiveness of the proposed method and model in achieving the coordinated dispatch of electricity and heat. Moreover, it highlighted the positive impact on the overall economy of system operation and the promotion of wind power consumption. The optimal configuration presented in this paper resulted in an 8.2% improvement in system operating economics and a 38.3% enhancement in wind power integration.

Funder

Natural Science Foundation of Jiangsu Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3