Abstract
The Biot number informs researchers about the controlling mechanisms employed for heat or mass transfer during the considered process. The mass transfer coefficients (and heat transfer coefficients) are usually determined experimentally based on direct measurements of mass (heat) fluxes or correlation equations. This paper presents the method of Biot number estimation. For estimation of the Biot number in the drying process, the multi-objective genetic algorithm (MOGA) was developed. The simultaneous minimization of mean absolute error (MAE) and root mean square error (RMSE) and the maximization of the coefficient of determination R2 between the drying model and experimental data were considered. The Biot number can be calculated from the following equations: Bi = 0.8193exp(-6.4951T−1) (and moisture diffusion coefficient from D/s2 = 0.00704exp(-2.54T−1)) (RMSE = 0.0672, MAE = 0.0535, R2 = 0.98) or Bi = 1/0.1746log(1193847T) (D/s2 = 0.0075exp(-6T−1)) (RMSE = 0.0757, MAE = 0.0604, R2 = 0.98). The conducted validation gave good results.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献