Abstract
The imbalance of power supply and demand is an important problem to solve in power industry and Non Intrusive Load Monitoring (NILM) is one of the representative technologies for power demand management. The most critical factor to the NILM is the performance of the classifier among the last steps of the overall NILM operation, and therefore improving the performance of the NILM classifier is an important issue. This paper proposes a new architecture based on the RNN to overcome the limitations of existing classification algorithms and to improve the performance of the NILM classifier. The proposed model, called Multi-Feature Combination Multi-Layer Long Short-Term Memory (MFC-ML-LSTM), adapts various feature extraction techniques that are commonly used for audio signal processing to power signals. It uses Multi-Feature Combination (MFC) for generating the modified input data for improving the classification performance and adopts Multi-Layer LSTM (ML-LSTM) network as the classification model for further improvements. Experimental results show that the proposed method achieves the accuracy and the F1-score for appliance classification with the ranges of 95–100% and 84–100% that are superior to the existing methods based on the Gated Recurrent Unit (GRU) or a single-layer LSTM.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献