A novel non-intrusive load monitoring technique using semi-supervised deep learning framework for smart grid
Author:
Publisher
Springer Science and Business Media LLC
Subject
Energy (miscellaneous),Building and Construction
Link
https://link.springer.com/content/pdf/10.1007/s12273-023-1074-5.pdf
Reference69 articles.
1. Abbas MZ, Ali Sajjad I, Hussain B, et al. (2022). An adaptive-neuro fuzzy inference system based-hybrid technique for performing load disaggregation for residential customers. Scientific Reports, 12: 2384.
2. Akbar MK, Amayri M, Bouguila N (2023). Deep learning based solution for appliance operational state detection and power estimation in non-intrusive load monitoring. In: Proceedings of International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems.
3. Alami M, Decock J, Kaddah R, et al. (2022). Conv-NILM-Net, a causal and multi-appliance model for energy source separation. In: Proceedings of European Conference on Machine Learning (ECML), MLBEM Workshop.
4. Barsim KS, Yang B (2015). Toward a semi-supervised non-intrusive load monitoring system for event-based energy disaggregation. In: Proceedings of 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA.
5. Çavdar İH, Faryad V (2019). New design of a supervised energy disaggregation model based on the deep neural network for a smart grid. Energies, 12: 1217.
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparing four machine learning algorithms for household non-intrusive load monitoring;Energy and AI;2024-09
2. A district-level building electricity use profile simulation model based on probability distribution inferences;Sustainable Cities and Society;2024-09
3. TSILNet: A novel hybrid model for energy disaggregation based on two-stage improved TCN combined with IECA-LSTM;Building Simulation;2024-08-15
4. IntDEM: an intelligent deep optimized energy management system for IoT-enabled smart grid applications;Electrical Engineering;2024-07-24
5. Evaluation of regression models and Bayes-Ensemble Regressor technique for non-intrusive load monitoring;Sustainable Energy, Grids and Networks;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3