Thermodynamic Approach for the Identification of Instability in the Wood Using Acoustic Emission Technology

Author:

Zhao Qi,Zhao Dong,Zhao JianORCID

Abstract

In order to monitor the crack growth of the wood material better and reduce failure risks, this paper studied the attenuation characteristics of acoustic emission signals in wood through pencil lead breaking (PLB) tests, in the aim of estimating the true amplitude value of the acoustic emission source signal. The tensile test of the double cantilever beam (DCB) specimens was used to simulate the crack tip growth within wood material, monitoring acoustic activity and location of crack tips within wood material using acoustic emission technology and digital image correlation (DIC). Results showed that the attenuation degree of acoustic emission signals increased exponentially as the propagation distance increased, and the relationship between relative amplitude attenuation rate and the propagation distance of the acoustic emission signal was established by the regression method, which provides the input parameters for the establishment of the crack instability prediction model in the next step. Based on a thermodynamic approach, a theoretical model for predicting crack instability was established, and the model was verified by DCB tests. The model uses acoustic emission parameters as the basis for judging whether the crack is instable. It provides theoretical support for the application of acoustic emission technology in wood health monitoring.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3