Auto-Regressive Integrated Moving-Average Machine Learning for Damage Identification of Steel Frames

Author:

Gao YuqingORCID,Mosalam Khalid M.ORCID,Chen Yueshi,Wang Wei,Chen Yiyi

Abstract

Auto-regressive (AR) time series (TS) models are useful for structural damage detection in vibration-based structural health monitoring (SHM). However, certain limitations, e.g., non-stationarity and subjective feature selection, have reduced its wide-spread use. With increasing trends in machine learning (ML) technologies, automated structural damage recognition is becoming popular and attracting many researchers. In this paper, we combined TS modeling and ML classification to automatically extract damage features and overcome the limitation of non-stationarity. We propose a two-stage framework, namely auto-regressive integrated moving-average machine learning (ARIMA-ML) with modules for pre-processing, model parameter determination, feature extraction, and classification. Based on shaking table tests of a space steel frame, floor acceleration data were collected and labeled according to experimental observations and records. Subsequently, we designed three damage classification tasks for: (1) global damage detection, (2) local damage detection, and (3) local damage pattern recognition. The results from these three tasks indicated the robustness and accuracy of the proposed framework where 97%, 98%, and 80% average segment accuracy were achieved, respectively. The confusion matrix results showed the unbiased model performance even under an imbalanced-class distribution. In summary, the presented study revealed the high potential of the proposed ARIMA-ML framework in vibration-based SHM.

Funder

California Department of Transportation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3