Optimising Plate Thickness in Interlocking Inter-Module Connections for Modular Steel Buildings: A Finite Element and Random Forest Approach

Author:

Elsayed Khaled1ORCID,Mutalib Azrul A.1,Elsayed Mohamed1,Azmi Mohd Reza1ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia

Abstract

Interlocking Inter-Module Connections (IMCs) in Modular Steel Buildings (MSBs) have garnered significant interest from researchers. Despite this, the optimisation of plate thicknesses in such structures has yet to be extensively explored in the existing literature. Therefore, this paper focuses on optimising the thickness of interlocking IMCs in MSBs by leveraging established experimental and numerical simulation methodologies. The study developed various numerical models for IMCs with plate thicknesses of 4 mm, 6 mm, 10 mm, and 12 mm, all subjected to compression loading conditions. The novelty of this study lies in its comprehensive parametric analysis, which evaluates the slip prediction model. A random forest regression model, trained using the ‘TreeBagger’ function, was also implemented to predict slip values based on applied force. Sensitivity analysis and comparisons with alternative methods underscored the reliability and applicability of the findings. The results indicate that a plate thickness of 11.03 mm is optimal for interlocking IMCs in MSBs, achieving up to 8.08% in material cost reductions while increasing deformation resistance by up to 50.75%. The ‘TreeBagger’ random forest regression significantly enhanced slip prediction accuracy by up to 7% at higher force levels.

Funder

Centre for Research and Instrumentation Management

Publisher

MDPI AG

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3