Co-Package Technology Platform for Low-Power and Low-Cost Data Centers

Author:

Papatryfonos KonstantinosORCID,Selviah David R.,Maman Avi,Hasharoni Kobi,Brimont Antoine,Zanzi Andrea,Kraft Jochen,Sidorov Victor,Seifried Marc,Baumgartner Yannick,Horst Folkert,Offrein Bert Jan,Lawniczuk Katarzyna,Broeke Ronald G.,Terzenidis Nikos,Mourgias-Alexandris GeorgeORCID,Tang Mingchu,Seeds Alwyn J.,Liu Huiyun,Sanchis PabloORCID,Moralis-Pegios Miltiadis,Manolis Thanasis,Pleros Nikos,Vyrsokinos Konstantinos,Sirbu Bogdan,Eichhammer Yann,Oppermann Hermann,Tekin Tolga

Abstract

We report recent advances in photonic–electronic integration developed in the European research project L3MATRIX. The aim of the project was to demonstrate the basic building blocks of a co-packaged optical system. Two-dimensional silicon photonics arrays with 64 modulators were fabricated. Novel modulation schemes based on slow light modulation were developed to assist in achieving an efficient performance of the module. Integration of DFB laser sources within each cell in the matrix was demonstrated as well using wafer bonding between the InP and SOI wafers. Improved semiconductor quantum dot MBE growth, characterization and gain stack designs were developed. Packaging of these 2D photonic arrays in a chiplet configuration was demonstrated using a vertical integration approach in which the optical interconnect matrix was flip-chip assembled on top of a CMOS mimic chip with 2D vertical fiber coupling. The optical chiplet was further assembled on a substrate to facilitate integration with the multi-chip module of the co-packaged system with a switch surrounded by several such optical chiplets. We summarize the features of the L3MATRIX co-package technology platform and its holistic toolbox of technologies to address the next generation of computing challenges.

Funder

H2020 Industrial Leadership

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3