Optimal Cardiac Resynchronization Therapy with Conduction System Pacing Guided by Electro-Anatomical Mapping: A Case Report

Author:

Pestrea Catalin12ORCID,Enache Roxana1,Cicala Ecaterina1,Vatasescu Radu34

Affiliation:

1. Interventional Cardiology Unit, Brasov County Clinical Emergency Hospital, 500326 Brasov, Romania

2. Department of Medical and Surgical Specialties, Faculty of Medicine, “Transilvania” University of Brasov, 500019 Brasov, Romania

3. Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania

4. Electrophysiology and Cardiac Pacing Lab, Clinical Emergency Hospital, 014461 Bucharest, Romania

Abstract

Introduction: Biventricular pacing has been the gold standard for cardiac resynchronization therapy in patients with left bundle branch block and severely reduced left ventricular ejection fraction for decades. However, in the past few years, this role has been challenged by the promising results of conduction system pacing in these patients, which has proven non-inferior and, at times, superior to biventricular pacing regarding left ventricular function outcomes. One of the most important limitations of both procedures is the long fluoroscopy times. Case description: We present the case of a 60-year-old patient with non-ischemic dilated cardiomyopathy and left bundle branch block in whom conduction system pacing was chosen as the first option for resynchronization therapy. A 3D electro-anatomical mapping system was used to guide the lead to the His bundle region, where correction was observed at high amplitudes, and afterward to the optimal septal penetration site. After reaching the left endocardium, left bundle branch pacing achieved a narrow, paced QRS complex with low fluoroscopy exposure. The three-month follow-up showed a significant improvement in clinical status and left ventricular function. Conclusion: Since conduction system pacing requires a great deal of precision, targeting specific, narrow structures inside the heart, 3D mapping is a valuable tool that increases the chances of success, especially in patients with complex anatomies, such as those with indications for cardiac resynchronization therapy.

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3