PointDMM: A Deep-Learning-Based Semantic Segmentation Method for Point Clouds in Complex Forest Environments

Author:

Li Jiang1ORCID,Liu Jinhao1,Huang Qingqing1

Affiliation:

1. School of Engineer, Beijing Forestry University, Beijing 100086, China

Abstract

Background. With the advancement of “digital forestry” and “intelligent forestry”, point cloud data have emerged as a powerful tool for accurately capturing three-dimensional forest scenes. It enables the creation and presentation of digital forest systems, facilitates the monitoring of dynamic changes such as forest growth and logging processes, and facilitates the evaluation of forest resource fluctuations. However, forestry point cloud data are characterized by its large volume and the need for time-consuming and labor-intensive manual processing. Deep learning, with its exceptional learning capabilities, holds tremendous potential for processing forestry environment point cloud data. This potential is attributed to the availability of accurately annotated forestry point cloud data and the development of deep learning models specifically designed for forestry applications. Nonetheless, in practical scenarios, conventional direct annotation methods prove to be inefficient and time-consuming due to the complex terrain, dense foliage occlusion, and uneven sparsity of forestry point clouds. Furthermore, directly applying deep learning frameworks to forestry point clouds results in subpar accuracy and performance due to the large size, occlusion, sparsity, and unstructured nature of these scenes. Therefore, the proposal of accurately annotated forestry point cloud datasets and the establishment of semantic segmentation methods tailored for forestry environments hold paramount importance. Methods. A point cloud data annotation method based on single-tree positioning to enhance annotation efficiency was proposed and challenges such as occlusions and sparse distribution in forestry environments were addressed. This method facilitated the construction of a forestry point cloud semantic segmentation dataset, consisting of 1259 scenes and 214.4 billion points, encompassing four distinct categories. The pointDMM framework was introduced, a semantic segmentation framework specifically designed for forestry point clouds. The proposed method first integrates tree features using the DMM module and constructs key segmentation graphs utilizing energy segmentation functions. Subsequently, the cutpursuit algorithm is employed to solve the graph and achieve the pre-segmentation of semantics. The locally extracted forestry point cloud features from the pre-segmentation are comprehensively inputted into the network. Feature fusion is performed using the MLP method of multi-layer features, and ultimately, the point cloud is segmented using the lightweight PointNet. Result. Remarkable segmentation results are demonstrated on the DMM dataset, achieving an accuracy rate of 93% on a large-scale forest environment point cloud dataset known as DMM-3. Compared to other algorithms, the proposed method improves the accuracy of standing tree recognition by 21%. This method exhibits significant advantages in extracting feature information from artificially planted forest point clouds obtained from TLS. It establishes a solid foundation for the automation, intelligence, and informatization of forestry, thereby possessing substantial scientific significance.

Funder

Natural Science Foundation of China

National Key Technology R&D Program of China

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3