A New Open-Source Software to Help Design Models for Automatic 3D Point Cloud Classification in Coastal Studies

Author:

Pellerin Le Bas Xavier1ORCID,Froideval Laurent2ORCID,Mouko Adan2,Conessa Christophe2ORCID,Benoit Laurent2,Perez Laurent2ORCID

Affiliation:

1. Scienteama, 4 Avenue de Cambridge, 14200 Hérouville-Saint-Clair, France

2. Normandie Univ, UNICAEN, UNIROUEN, CNRS, M2C, 14000 Caen, France

Abstract

This study introduces a new software, cLASpy_T, that helps design models for the automatic 3D point cloud classification of coastal environments. This software is based on machine learning algorithms from the scikit-learn library and can classify point clouds derived from LiDAR or photogrammetry. Input data can be imported via CSV or LAS files, providing a 3D point cloud, enhanced with geometric features or spectral information, such as colors from orthophotos or hyperspectral data. cLASpy_T lets the user run three supervised machine learning algorithms from the scikit-learn API to build automatic classification models: RandomForestClassifier, GradientBoostingClassifier and MLPClassifier. This work presents the general method for classification model design using cLASpy_T and the software’s complete workflow with an example of photogrammetry point cloud classification. Four photogrammetric models of a coastal dike were acquired on four different dates, in 2021. The aim is to classify each point according to whether it belongs to the ‘sand’ class of the beach, the ‘rock’ class of the riprap, or the ‘block’ class of the concrete blocks. This case study highlights the importance of adjusting algorithm parameters, selecting features, and the large number of tests necessary to design a classification model that can be generalized and used in production.

Funder

OFB through the AUPASED project

European Regional Development Fund and the Normandie Region for the CHERLOC project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3