Abstract
Robots are essential for the rapid development of Industry 4.0. In order to truly achieve autonomous robot control in customizable production lines, robots need to be accurate enough and capable of recognizing the geometry and orientation of an arbitrarily shaped object. This paper presents a method of inline inspection with an industrial robot (IIIR) for mass-customization production lines. A 3D scanner was used to capture the geometry and orientation of the object to be inspected. As the object entered the working range of the robot, the end effector moved along with the object and the camera installed at the end effector performed the requested optical inspections. The detailed information about the developed methodology was introduced in this paper. The experiments showed there was a relative movement between the moving object and the following camera and the speed was around 0.34 mm per second (worst case was around 0.94 mm per second). For a camera of 60 frames per second, the relative moving speed between the object and the camera was around 6 micron (around 16 micron for the worst case), which was stable enough for most industrial production inspections.
Funder
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献