Differentiation of Livestock Internal Organs Using Visible and Short-Wave Infrared Hyperspectral Imaging Sensors

Author:

Coombs Cassius E. O.ORCID,Allman Brendan E.,Morton Edward J.,Gimeno MarinaORCID,Horadagoda Neil,Tarr GarthORCID,González Luciano A.ORCID

Abstract

Automatic identification and sorting of livestock organs in the meat processing industry could reduce costs and improve efficiency. Two hyperspectral sensors encompassing the visible (400–900 nm) and short-wave infrared (900–1700 nm) spectra were used to identify the organs by type. A total of 104 parenchymatous organs of cattle and sheep (heart, kidney, liver, and lung) were scanned in a multi-sensory system that encompassed both sensors along a conveyor belt. Spectral data were obtained and averaged following manual markup of three to eight regions of interest of each organ. Two methods were evaluated to classify organs: partial least squares discriminant analysis (PLS-DA) and random forest (RF). In addition, classification models were obtained with the smoothed reflectance and absorbance and the first and second derivatives of the spectra to assess if one was superior to the rest. The in-sample accuracy for the visible, short-wave infrared, and combination of both sensors was higher for PLS-DA compared to RF. The accuracy of the classification models was not significantly different between data pre-processing methods or between visible and short-wave infrared sensors. Hyperspectral sensors, particularly those in the visible spectrum, seem promising to identify organs from slaughtered animals which could be useful for the automation of quality and process control in the food supply chain, such as in abattoirs.

Funder

Rapiscan Systems via MLA Donor Company

Meat and Livestock Australia

Australian Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3