Optimized Distributed Proactive Caching Based on Movement Probability of Vehicles in Content-Centric Vehicular Networks

Author:

Oh SeungminORCID,Park Sungjin,Shin Yongje,Lee EuisinORCID

Abstract

Content-centric vehicular networks (CCVNs) have considered distributed proactive caching as an attractive approach for the timely provision of emerging services. The naïve caching schemes cache all of the contents to only one selected roadside unit (RSU) for requested vehicles to decrease the data acquisition delay between the data source and the vehicles. Due to the high deployment cost for RSUs and their limited capacity of caching, the vehicular networks could support only a limited number of vehicles and a limited amount of content and thus decrease the cache hit ratio. This paper proposes a mobility-aware distributed proactive caching protocol (MDPC) in CCVNs. MDPC caches contents to the selected RSUs according to the movement of vehicles. To reduce the redundancy and the burden of caching for each RSU, MDPC distributes to cache partial contents by the movement pattern, the probability to predict the next locations (RSUs) on the Markov model based on the current RSU. For recovery of prediction failures, MDPC allows each RSU to request partial missing contents to relatively closer neighbor RSUs with a short delay. Next, we expand the protocol with traffic optimization called MDPC_TO to minimize the amount of traffic for achieving proactive caching in CCVNs. In proportion to the mobility probability of a vehicle toward each of the next RSUs, MDPC_TO controls the amount of pre-cached contents in each of the next RSUs. Then, MDPC_TO has constraints to provide enough content from other next RSUs through backhaul links to remove the delay due to prediction failures. Simulation results verify that MDPC_TO produces less traffic than MDPC.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3