Optimizing the Mechanical Performance and Microstructure of Alkali-Activated Soda Residue-Slag Composite Cementing Materials by Various Curing Methods

Author:

Zhang Zhaoyun,Xie Chuang,Sang Zhaohu,Li Dejun

Abstract

Aiming to promote further the application of alkali-activated soda residue-ground granulated blast furnace slag (SR-GGBS) cementing materials, this study explored the optimal curing method for enhancing mechanical performance. The optimal curing method was determined based on the development of compressive strengths at different curing periods and microstructural examination by XRD, FTIR, SEM, and TG-DTG. The results show that the strength of cementing materials after room-temperature (RT) dry curing was the poorest, with the slow development of mechanical performance. The 7d and 28d compressive strengths were only 14.62 and 20.99 MPa, respectively. Compared with the values after RT dry curing, the samples’ 7d and 28d compressive strengths after RT water curing, standard curing, and RT sealed curing were enhanced by 16.35%/24.06%, 30.98%/23.77%, and 38.24%/37.97%, respectively. High-temperature (HT) curing can significantly improve the early strength of the prepared cementing materials. Curing at 60 °C for 12 h was the optimal HT curing method. Curing at 60 °C for 12 h enhanced the 3d strength by 100.84% compared with standard curing. This is because HT curing promoted the decomposition and aggregation of GGBS, and more C-A-S-H gel and crystal hydration products, including ettringite and calcium chloroaluminate hydrate, were produced and filled the inner pores, thereby enhancing both the overall compactness and mechanical performance. However, curing at too high temperatures for too long can reduce the material’s overall mechanical performance. After excess HT curing, many shrinkage cracks were produced in the sample. Different thermal expansion coefficients of different materials led to a decline in strength. The present study can provide a theoretical foundation for extensive engineering applications of alkali-activated SR-GGBS composite cementing materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3