Author:
Zhang Zhaoyun,Xie Chuang,Sang Zhaohu,Li Dejun
Abstract
Aiming to promote further the application of alkali-activated soda residue-ground granulated blast furnace slag (SR-GGBS) cementing materials, this study explored the optimal curing method for enhancing mechanical performance. The optimal curing method was determined based on the development of compressive strengths at different curing periods and microstructural examination by XRD, FTIR, SEM, and TG-DTG. The results show that the strength of cementing materials after room-temperature (RT) dry curing was the poorest, with the slow development of mechanical performance. The 7d and 28d compressive strengths were only 14.62 and 20.99 MPa, respectively. Compared with the values after RT dry curing, the samples’ 7d and 28d compressive strengths after RT water curing, standard curing, and RT sealed curing were enhanced by 16.35%/24.06%, 30.98%/23.77%, and 38.24%/37.97%, respectively. High-temperature (HT) curing can significantly improve the early strength of the prepared cementing materials. Curing at 60 °C for 12 h was the optimal HT curing method. Curing at 60 °C for 12 h enhanced the 3d strength by 100.84% compared with standard curing. This is because HT curing promoted the decomposition and aggregation of GGBS, and more C-A-S-H gel and crystal hydration products, including ettringite and calcium chloroaluminate hydrate, were produced and filled the inner pores, thereby enhancing both the overall compactness and mechanical performance. However, curing at too high temperatures for too long can reduce the material’s overall mechanical performance. After excess HT curing, many shrinkage cracks were produced in the sample. Different thermal expansion coefficients of different materials led to a decline in strength. The present study can provide a theoretical foundation for extensive engineering applications of alkali-activated SR-GGBS composite cementing materials.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献