Strength Characteristics and Micro-Mechanism of Silty Soil Modified by Red Mud Co-Cement

Author:

Li Xinming1,Yan Pan1,Yin Song1,Zhang Xianwei2ORCID,Liu Pengfei1,Wang Yulong1

Affiliation:

1. School of Civil Engineering and Architecture, Zhongyuan University of Technology, Zhengzhou 450007, China

2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

Abstract

Red mud (RM) is a kind of solid waste produced during the bauxite refining process, which can cause significant environmental pollution when stored in large quantities. To address this issue and to improve the reuse rate of RM, this study investigates the feasibility of using RM as a roadbed filling material, specifically in combination with cement, using modified silty sand (P.O-RMS). Therefore, mechanical and microscopic tests are conducted with different RM contents (WRM), cement contents (WP.O), and curing ages to analyze the P.O-RMS′ strength, deformation characteristics, and microstructure formation mechanism. Additionally, the radioactivity and heavy metal concentrations of P.O-RMS are also detected. Mechanical test results showed that the unconfined compressive strength (UCS) of P.O-RMS does not increase monotonically with the increase of WRM, and the peak strength appears at WRM = 20%. Although adding RM has a negative impact on the toughness of P.O-RMS at the initial curing ages of 7 days and 28 days, they still meet the requirements of the Chinese standard for high-grade highway base strength. Scanning electron microscope testing shows that the gel products produced by cement hydration increase with the amount of RM, and reach their maximum at WRM = 20%. Therefore, WRM = 20% is recommended as the optimum admixture of P.O-RMS. The usage of RM as a filling material for roadbed construction in this study not only aligns with the principles of sustainable development, but also provides a crucial theoretical foundation for the effective utilization of RM resources.

Funder

National Natural Science Foundation of China

Young Key Teachers in Colleges and Universities of Henan Province

Key Research Projects of Higher Education Institutions in Henan Province

Science Fund for Distinguished Young Scholars of Hubei Province

strength improvement plan of the advantageous disciplines of Zhongyuan University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3